Spherical Time, Quantum Oscillations, and the Black Hole Information Paradox: A Testable Framework

Abstract: We propose a novel framework wherein spacetime emerges as a network of quantum oscillators governed by spherical time, an interplay between past annihilation $(x^{-1}a)$ and future creation $(x^{+1}a^{\dagger})$ operators. Past annihilation $(x^{-1}a)$ operators are black holes (or wormholes, "infinities") whether on the Planck scale or the Cosmological scale. This model naturally integrates quantum mechanics and general relativity by treating the evolution of black holes, mass generation, and dark energy as emergent effects of fundamental temporal oscillations. We present testable predictions in astrophysical observations, quantum optics, and black hole analog experiments that offer experimental validation of this approach. Finally, we explore formal mathematical formulations including Lagrangian dynamics, path integrals, and holographic principles.

1. Introduction The reconciliation of quantum mechanics and general relativity remains one of the most profound challenges in modern physics. The standard model of particle physics describes fundamental forces through quantum field theory (QFT), whereas general relativity treats gravity as the curvature of a continuous spacetime. Our framework suggests that spacetime itself arises from discrete oscillatory processes, and that time, rather than being a static parameter, exhibits quantum fluctuations mirrored by matter and energy fields.

Black holes offer a crucial testbed for this theory. Stephen Hawking's seminal work on black hole radiation led to the apparent paradox that information may be lost when a black hole evaporates. This conflicts with the unitarity of quantum mechanics, which demands information conservation. In our model, information is never lost but instead imprints onto the outgoing Hawking radiation through spherical time oscillations.

2. The Spherical Time Framework

2.1 Temporal Oscillations and Quantum Gravity

We define the state of a quantum system evolving in spherical time as:

$$\Psi_{
m future} = x^0 \Psi_{
m present} + x^{-1} a \Psi_{
m past} + x^{+1} a^\dagger \Psi_{
m Hawking}$$

Here, x^0 represents the present moment, while $x^{-1}a$ and $x^{+1}a^{\dagger}$ govern past annihilation and future creation processes, respectively. The event horizon of a black hole thus acts as a quantum information processor, encoding infalling states into the Hawking radiation spectrum.

2.2 Black Holes as Quantum Information Processors

We propose that black holes function as quantum gates: $U_{
m BH}|\Psi_{
m in}
angle=|\Psi_{
m out}
angle_.$

where $U_{\rm BH}$ is a unitary transformation ensuring information conservation. This aligns with the "ER=EPR" conjecture, suggesting entanglement between inside and outside the event horizon.

3. Testable Predictions

3.1 Hawking Radiation Correlations

Our framework predicts that Hawking radiation is not purely thermal but instead encodes hidden correlations between emitted photons. These correlations can be detected through high-energy telescopes analyzing deviations from a pure blackbody spectrum.

• **Experimental Test:** Gamma-ray and X-ray observatories (e.g., JWST, Athena, Fermi) should measure non-random entanglement signatures in black hole emissions.

3.2 Gravitational Wave Echoes

Since black holes store information rather than erase it, gravitational wave signals from mergers should exhibit "echoes"—post-merger oscillatory deviations from classical predictions.

• **Experimental Test:** LIGO and LISA detectors should analyze post-merger signals for deviations consistent with past-future oscillatory coupling.

3.3 Quantum Simulations of Black Hole Information Scrambling

Black holes scramble information rather than destroy it. Simulating this process in superconducting qubit systems can verify our model's predictions.

• **Experimental Test:** Quantum computing platforms (Google Sycamore, IBM Q) should simulate black hole evaporation using unitary quantum circuits.

4. Quantum Information and Holography

4.1 Black Hole Entropy as Temporal Oscillation Encoding

We redefine black hole entropy as:

$$S_{
m BH}=rac{k_Bc^3}{4G\hbar}(x^{-1}a+x^{+1}a^\dagger)$$

where entropy encodes the past-future oscillatory structure.

4.2 Path Integral Formulation

To integrate spherical time into quantum gravity, we introduce a modified path integral:

$$Z=\int D\phi e^{iS/\hbar}(x^{-1}a+x^{+1}a^\dagger)$$

This suggests that quantum causality emerges from the interplay of annihilation and creation operators.

5. Conclusion

We have developed a testable framework in which black holes act as quantum processors encoding information through spherical time oscillations. Our approach provides a novel way to resolve the black hole information paradox while unifying aspects of quantum mechanics, gravity, and holography. Future work should focus on refining experimental protocols and integrating this model into broader quantum gravity research.